

How to Use µLED Optoelectrodes: Surgery, Data Collection and µLED Control

Mihály (**Misi**) Vöröslakos

NYU Langone Medical Center / University of Michigan

Plexon webinar series

2020.07.15.

¹https://mint.engin.umich.edu/workshop/

Optogenetic Experimentation Using a µLED Optoelectrode

- Lesson goals:
 - Prerequisites: stereotactic surgery
 - Hands-on optoelectrode preparation for chronic surgery (designing and using microdrives)
 - Methods with optoelectrodes, including cell-type identification and noise/artifact reduction
 - Hands-on surgical experience using a chronic uLED array with simultaneous multi-channel stimulation and recording

• Optogenetic Experimentation Using a µLED Optoelectrode

NeuroNex MINT workshop¹

UNIVERSITY O

µLED Optoelectrodes

Acute

Chronic

U I

NYU

Pictures source: http://mint.engin.umich.edu/wp-content/uploads/sites/327/2020/05/OPTOELECTRODE NEURAL PROBE 12uLED 32ELECTRODE.pdf

µLED Optoelectrodes

n = 32 (8 sites/shank)	Number of recording channels	n = 32 (8 sites/shank)
n = 12 (3 LEDs/shank)	Number of µLEDs	n = 12 (3 LEDs/shank)
5 mm	Length of shanks	5 mm
No flexible cable	Length of flexible cable	22 mm

Data sheet is availabe at http://mint.engin.umich.edu/wp-content/uploads/sites/327/2020/05/OPTOELECTRODE NEURAL PROBE 12uLED 32ELECTRODE.pdf

µLED Optoelectrodes

Recording of neuronal signal

Any extracellular electrophysiology system

Driving μ LED's during experiment

Function generator, current source, OSC1Lite from MINT program

Probe holding mechanism

Metal bars glued to PCB 3D-printed holder

How to hold an optoelectrode/silicon probe? UNIVERSITY O

How to hold an optoelectrode/silicon probe?

Recoverable micro-drive system

- Allows probe recovery after long-term recording
- Improves recovery time and probe reusability
 - Save time and money for researchers

Recoverable micro-drive system

Recoverable micro-drive system

- Allows probe recovery after long-term recording
- Improves recovery time and probe reusability
 - Save time and money for researchers

Recoverable micro-drive features

- Travel distance: 4.8 mm
- Shell base: 3.2 x 7.5 mm (WxL)
- Weight: 2g

Using a recoverable micro-drive

- Build a micro-drive
- Attach probe to micro-drive
- Implant device

STL files, instructions, videos are availabe at https://github.com/YoonGroupUmich/Microdrive

- Are the chronic probes drivable / movable once implanted?
 - Yes, if you implant a probe attached to a microdrive
 - For more details, see: Vandecasteele et. al., 2012
- What kind of anesthesia would work best for the recording?
 - Urethane (non-survival)
 - Ketamine Xylazine
- What is the stability like for acute recording?
 - There can be some drift, but you can minimize it with:
 - Inserting the probe slowly (for more details, see: Fiáth et. al., 2019 -> insertion speed of 2 μ m/s)
 - Once at target location, wait at least 30 minutes before recording is obtained (if possible)
 - Postprocessing options
 - KiloSort2 can handle drifts very well

Drift during acute recording

Vöröslakos unpublished data

Acute recording with an optoelectrode

shank-2

Recording

- C57BL/6J mouse injected with AAV5-CaMKIIa-hChR2
- Isoflurane anesthesia
- Recording from hippocampus

shank-1

Stimulation

• Sh-4/LED-1, 30 μA, 100 ms

shank-3

Vöröslakos unpublished data

(7th times used in acute animals)

Acute recording with an optoelectrode UNIVERSITY OF

Recording

- Transgenic mouse
- Isoflurane anesthesia
- **Recording from hippocampus** •

Stimulation

Sh-3/LED-2, 2.8V, 50 ms •

non-functioning channel

shank-3

Kim et. al., 2020

п

п

Site 1

Site 4

Site 2

50 µm

Chronic recording with an optoelectrode

Recording

- C57BL/6J mouse
- injected with AAV5-CaMKIIa-hChR2
- Recording from hippocampus

Stimulation

- **Day-1** Sh-3/LED-2, 30 μ A, 100 ms
- **Day-16** Sh-4/LED-1, 60 μA, 100 ms

Vöröslakos unpublished data

μLED Optoelectrodes – recording and stimulation

Light stimulation

Any extracellular electrophysiology system

- Intan USB Eval Board¹
- Plexon Omniplex system
- Tucker Davis PZ5 Digital system
- Many more...

Current mode

- OSC1Lite²
- Intan RHS2000

Voltage mode

Function generator

¹All presented data were collected with Intan USB Eval Board. ²Available at <u>https://github.com/YoonGroupUmich/osc1lite</u>

Recording

Current mode

- OSC1Lite²
- Intan RHS2000

Voltage mode

- Function generator
 - Apply offset voltage

Current mode

- OSC1Lite²
- Intan RHS2000

Never apply more than 100 μA

Function generator

- Apply offset voltage
- Set upper threshold @ 100 μA

Voltage mode

Current mode

- OSC1Lite
- Intan RHS2000

Voltage mode

• Function generator

Controlling µLED Optoelectrodes

Current mode

- OSC1Lite
- Intan RHS2000

Voltage mode

Function generator

 +
 Breakout board

Used by Sam McKenzie @ NYU BuzsakiLab

Controlling µLED Optoelectrodes - OSC1Lite

OSC1Lite features¹

- 12-channel independent current drivers
- Current range 1 μ A –100 μ A (400 nA resolution)
- Custom waveforms
- Trigger in/out

¹More details at <u>https://github.com/YoonGroupUmich/osc1lite/blob/ref200/OSC1Lite_Manual_v2.docx</u>

Controlling μ LED Optoelectrodes - OSC1Lite GUI

elect your OSCIL	ite			Channel #	Waveform	Trigger Source	e	Mode	PC Trigger	Stop	Trigger Out	Status
			Connect	S1L1	Waveform 1 ~	PC trigger	4	One-shot	Trigger	Stop		Board not connected
839000NJ/S	nel Confin		-	\$1L2	Waveform 1 ~	PC trigger		One-shot	Trigger	Stop	i	Board not connected
Save config to file			\$1L3	Waveform 1 ~	PC trigger	-	One-shot	Trigger	Stop		Board not connected	
1000				S2L1	Waveform 1 ~	PC trigger		One-shot	Trigger	Stop		Board not connected
				52L2	Waveform 1 ~	PC trigger		One-shot	Trioger	Stop		Board not connected
Add New Waveform		<u></u>	Waveform 1 ~	PC trigger		One-shot	Tripper	Stop		Board not connected		
aveform 1						e e ungges		OTTE SHOT	mager	seeb		
aveform Type Number of Pulses		Preview X	SSL1	Waveform 1 ~	PC trigger		Une-shot	Ingger	Stop		Board not connected	
quare / Trapezoi	d ~ 1	÷		\$3L2	Waveform 1 ~	PC trigger	~	One-shot	Trigger	Stop		Board not connected
mplitude (µA)	Period (ms)	Pulse Width (ms)	Rise Time (ms)	\$3L3	Waveform 1 ~	PC trigger	14	One-shot	Trigger	Stop		Board not connected
.0	0.000	0.000	0	\$4L1	Waveform 1 ~	PC trigger	~	One-shot	Trigger	Stop		Board not connected
Waveform 2				54L2	Waveform 1 ~	PC trigger	4	One-shot	Trigger	Stop		Board not connected
aveform Type	Number of Pu	lses	Preview X	\$4L3	Waveform 1 ~	PC trigger		One-shot	Trigger	Stop		Board not connected
quare / Trapezoi	d 🗸 🗸 1	-		Trianas								
nplitude (μA)	Period (ms)	Pulse Width (ms)	Rise Time (ms)	ingger A	4.11							
.0	0.000	0.000	0									
aveform 3				Log								
aveform Type Number of Pulses Preview >>		Preview X										
quare / Trapezoid	d 🗸 1	•										
Di Li CAN	Period (ms)	Pulse Width (ms)	Rise Time (ms)									
mpiitude (µA)	0.000	0.000	0									
npiitude (µA) .0												
.0 /aveform 4												
aveform 4	Number of Pu	lses	Preview X									
npiiruide (μΑ) .0 /aveform 4 aveform Type quare / Trapezoii	Number of Pu	lses	Preview X									
Aveform 4 /aveform 7ype quare / Trapezoid nplitude (μΑ)	Number of Pu d v 1 Period (ms)	lses Pulse Width (ms)	Preview X Rise Time (ms)									

¹More details at <u>https://github.com/YoonGroupUmich/osc1lite/blob/ref200/OSC1Lite_Manual_v2.docx</u>

Controlling µLED Optoelectrodes

پہ آ NYU

Stimulation cable

,Typical' setup

¹Used by Sam McKenzie @ NYU BuzsakiLab

Analog sensor (IR gate) LED driver (OSC1Lite) Ephys recording (Intan USB Eval Board)

Cleaning the probe

- Chemical cleaning
 - Overnight DI water
 - Overnight contact lens solution¹
 - Overnight DI water
- Mechanical cleaning
 - Removing tissue particles with needle
 - Insert probe into phantom brain

DI water 24h Enzymatic solution 24h **DI** water

NYU

r T NYU

- Record neuronal activity
- Detect artifacts if any
 - Interpolate over artifacts
 - Data is lost
 - Reduce artifacts
 - Use ,new' artifact-free uLED probes
 - Pulse-shaping
- Run spike sorting
 - Acute recordings with drift
 - KiloSort2 can perform better
 - Chronic recordings
 - Any spikesorting software can be used

لاً ۲ NYU

- Is internal body heat a factor in the accuracy of the data obtained by the probe?
 - Internal body heat will always affect neuronal activity.¹
 - The effect is independent of recording device.
- Can µLED optoelectrode heat brain tissue?
 - Not really
 - The amount of light we are using is very low.
 - Silicon is a very good heat conductor.
 - But keep in mind that long (> 10 s), continuous light stimulation can heat brain tissue.²

μLED Optoelectrodes

- Investigating local microcircuit effects
- High-density uLED probes can provide excellent spatio-temporal resolution

Yoon Lab

Funding sources: NSF, NIH, DARPA, KIST and Kavli Foundation

- Investigating local microcircuit effects
- High-density uLED probes can provide excellent spatio-temporal resolution

Useful links related to my talk

- MINT program
 - https://mint.engin.umich.edu/
- Yoon's lab github (micro-drive/OSC1Lite)
 - <u>https://github.com/YoonGroupUmich</u>
- Buzsaki's lab github (surgery base)
 - https://github.com/buzsakilab
- Spikesorting (there are many others)
 - <u>https://github.com/MouseLand/Kilosort2</u>
- My contact: voroslakos@gmail.com