

Transcranial electrical stimulation (TES) induced synaptic plasticity in freely moving rats

Mihaly (Misi) Voroslakos

Postdoctoral Researcher

Buzsaki Lab, NYU

Translational Research in Progress (TRIP) Seminar 2022. July 18.

Neuromodulation techniques

DBS Deep brain stimulation

Invasive Excellent spatial resolution Depth can be stimulated

Scangos et. al., 2021, Nat. Medicine

TES

Transcranial electrical stimulation

Non-invasive Poor spatial resolution Depth cannot be stimulated Inexpensive

Cathode Anode

Based on PubMed search tDCS AND disorderName

Stimulation parameters

- Waveform: direct current
- *Intensity:* Low (< 2mA)

Buzsákil

Duration: 10 – 20 minutes

tDCS in clinical trials

Transcranial direct current stimulation (tDCS)

Electrode montage

Effects of tDCS

Effects depend on

- Electrode *location, size and configuration*
- Stimulation *polarity, intensity and duration*
- Target area *depth, neurons' morphology*

Effect of electric field strength

Orientation / morphology of neuron

Anode 🗖 Cathode

Effects of tDCS

Effect of electric field strength

- 10 AMPA trafficking
- 9 Protein synthesis
- 8 mGluR5
- 7 Adenosine A1R
- 6 BDNF
- 5 Oscillation Power
- 4 NMDAR
- 3 LTD
- 2 LTP
- 1 Firing rate

Effect of electric field strength

IS HUMAN TRANSLATION POSSIBLE?

Courtesy of Dr. Greg Kronberg.

Measuring electric fields in rats

Neuropixels 2.0

• 1280 recording sites / shank

Shank-by-shank recording

• 4 x 384 channels = 1536 channels

Stimulation induced electric fields in rats

Intensity (µA)

tDCS-induced neuroplasticity in rats - Methods

Effects of tDCS depend on

Stimulating electrode *location and size*

• Fixed across animals

Low variability

Stimulation *polarity, intensity and duration*

Varied across days

Test multiple tDCS parameters

Target area *depth, neurons' morphology*

- <u>Hippocampus is parallel with E-field</u>
- Visual cortex has variable orientations

Different brain regions

tDCS-induced neuroplasticity in rats

 ΔF - percent change in spiking between Pre and Stim, Post

$$\Delta F = 100 \ \frac{F_{stim} - Fpr_e}{\max(Fpr_e, Fs_{tim})}$$

tDCS-induced neuroplasticity in rats

n = 2 rats

Hippocampus

• 145 PYR and 19 INT

Cortex

• 53 PYR and 42 INT

Large-scale recordings

- 384 channels @ 30 kS/s
- 80 Gb data/hour

tDCS-induced change in firing rate lasts 50 minutes

Hippocampus is more influenced by tDCS

- Better aligned to electric field
- Higher electric field in hippocampus

BUT visual cortex is also affected

1. We established a tDCS protocol in rats that can mimic human intensities.

- Provide mechanistic explanations for findings in humans.
- Optimization of stimulation protocols.
- More thorough understanding of tDCS effects (e.g., state-dependent changes).
- 2. tDCS could induce neuroplasticity that outlasted the stimulation.
- 3. tDCS affected multiple brain regions, including hippocampus and visual cortex.

1. We established a tDCS protocol in rats that can mimic human intensities.

- Provide mechanistic explanations for findings in humans.
- Optimization of stimulation protocols.
- More thorough understanding of tDCS effects (e.g., state-dependent changes).
- 2. tDCS could induce neuroplasticity that outlasted the stimulation.
- 3. tDCS affected multiple brain regions, including hippocampus and visual cortex.

B pocket

silicone tube

TES-dose dependent BOLD activation pattern

MODULATED BRAIN NETWORKS

15

10

5

0

-5

-10

-15

50 µA	100 μA	250 μA
-	Somato-motor	Somato-motor
-	Somato-motor-prefrontal	Somato-motor-prefrontal
-	-	Cortico-hippocampal
-	Hippocampal-striatal-thalamic/midbrain	Hippocampal-striatal-thalamic/midbrain
-	Somato-motor-striatal/thalamic/midbrain	-